Public ISBD UNIMARC

Type de documentThèse
Langueang
TitreFeedback linearization control of multivariable and nonlinear systems (UAV) [ressource textuelle, sauf manuscrits]
Auteur(s)Loubar, Hocine (Auteur)
Boushaki, Razika (Directeur de thèse)
Adresse bib.[s.l] : [s.n],2022
Collation177 p. : ill. ; 30 cm + CD-Rom
NotesBibliogr. p. 168-177
Notes de thèseDoctorat : Université de Boumerdès - M'hamed Bougara , Département Ele : 2022
ThemeElectronique
Mot (s) cléQuadrotor
Eigenstructure
Backstepping
RésuméDuring the last decades, unmanned aerial vehicles (UAV) quadrotors have been widely used for many applications; furthermore, various techniques for their modelling and control have been proposed. Among the challenges encountered in the design of controllers for a quadrotor is the fact that it is a highly coupled and nonlinear multivariable system. It is also nown as being an under-actuated system because it uses four actuators to control six degrees of freedom. In this work, the nonlinear dynamic model of the quadrotor is formulated using the Newton-Euler method. Then different linear and nonlinear control techniques for quadrotor trajectory tracking are investigated. First, SMC and PD controllers for linear and nonlinear trajectory tracking of the quadrotor are implemented, and genetic algorithm is used to optimize the controller parameters according to different objective functions. Both techniques are evaluated and compared in terms of trajectory tracking capabilities, dynamic performance, and the effect of possible disturbances. Then, backstepping and gain scheduling ontrol techniques are designed in order to control the altitude and attitude of the quadrotor, in the absence of disturbances and also in a windy environment. Finally, a new feedback nearization approach based on coordinate transformation and state feedback, is proposed. In this approach, the state space description of nonlinear quadrotor system is transformed into a linear quasi block controller decoupled form, then eigenstructure assignment using state feedback is applied. The proposed approach is used to control a quadrotor, in order to assess its performance in terms of trajectory tracking capabilities, time response performance, robustness and robust stability. The simulation is carried out using MATLAB/Simulink software.

Loubar, Hocine
Feedback linearization control of multivariable and nonlinear systems (UAV) [ressource textuelle, sauf manuscrits] / Hocine Loubar; Dir. Razika Boushaki.-[s.l] : [s.n],2022.-177 p. : ill. ; 30 cm + CD-Rom.
- Bibliogr. p. 168-177
Doctorat : Université de Boumerdès - M'hamed Bougara , Département Ele : 2022
.

Quadrotor
Eigenstructure
Backstepping

During the last decades, unmanned aerial vehicles (UAV) quadrotors have been widely used for many applications; furthermore, various techniques for their modelling and control have been proposed. Among the challenges encountered in the design of controllers for a quadrotor is the fact that it is a highly coupled and nonlinear multivariable system. It is also nown as being an under-actuated system because it uses four actuators to control six degrees of freedom. In this work, the nonlinear dynamic model of the quadrotor is formulated using the Newton-Euler method. Then different linear and nonlinear control techniques for quadrotor trajectory tracking are investigated. First, SMC and PD controllers for linear and nonlinear trajectory tracking of the quadrotor are implemented, and genetic algorithm is used to optimize the controller parameters according to different objective functions. Both techniques are evaluated and compared in terms of trajectory tracking capabilities, dynamic performance, and the effect of possible disturbances. Then, backstepping and gain scheduling ontrol techniques are designed in order to control the altitude and attitude of the quadrotor, in the absence of disturbances and also in a windy environment. Finally, a new feedback nearization approach based on coordinate transformation and state feedback, is proposed. In this approach, the state space description of nonlinear quadrotor system is transformed into a linear quasi block controller decoupled form, then eigenstructure assignment using state feedback is applied. The proposed approach is used to control a quadrotor, in order to assess its performance in terms of trajectory tracking capabilities, time response performance, robustness and robust stability. The simulation is carried out using MATLAB/Simulink software.

00100000000000001108930000621
100  $a                         y50      
101  $aang
2001 $aFeedback linearization control of  multivariable and nonlinear systems (UAV)$bressource textuelle, sauf manuscrits
210  $a[s.l]$c[s.n]$d2022
215  $a177 p.$cill.$d30 cm$eCD-Rom
300  $aBibliogr. p. 168-177
328 1$bDoctorat$eUniversité de Boumerdès - M'hamed Bougara  , Département Ele$d2022
330  $aDuring the last decades, unmanned aerial vehicles (UAV) quadrotors have been widely used for many applications; furthermore, various techniques for their modelling and control have been proposed. Among the challenges encountered in the design of controllers for a quadrotor is the fact that it is a highly coupled and nonlinear multivariable system. It is also nown as being an under-actuated system because it uses four actuators to control six degrees of freedom.  In this work, the nonlinear dynamic model of the quadrotor is formulated using the Newton-Euler method. Then different linear and nonlinear control techniques for quadrotor trajectory tracking are investigated. First, SMC and PD controllers for linear and nonlinear trajectory tracking of the quadrotor are implemented, and genetic algorithm is used to optimize the controller parameters according to different objective functions. Both techniques are evaluated and compared in terms of trajectory tracking capabilities, dynamic performance, and the effect of possible disturbances. Then, backstepping and gain scheduling ontrol techniques are designed in order to control the altitude and attitude of the quadrotor, in the absence of disturbances and also in a windy environment.  Finally, a new feedback nearization approach based on coordinate transformation and state feedback, is proposed. In this approach, the state space description of nonlinear quadrotor system is transformed into a linear quasi block controller decoupled form, then eigenstructure assignment using state feedback is applied. The proposed approach is used to control a quadrotor, in order to assess its performance in terms of trajectory tracking capabilities, time response performance, robustness and robust stability. The simulation is carried out using MATLAB/Simulink software.
600  $aQuadrotor
600  $aEigenstructure
600  $aBackstepping
615  $n17$aElectronique$2theme CCDZ CERIST 2011
700  $aLoubar$b Hocine$4070
701  $aBoushaki$b Razika$4727
801 0$aDZ$bCCDZ CERIST
801 1$aDZ$bCCDZ CERIST 
801 2$aDZ$bCCDZ CERIST 
801 3$aDZ$bCCDZ CERIST 
901$ac